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We study localization and wave trapping in disordered, nonlinear dynamical 
systems. For some models of classical, disordered anharmonic crystal lattices, 
we prove that, with large probability, there are quasiperiodic lattice vibrations 
of finite total energy which lie on some infinite-dimensional, compact invariant 
tori in phase space. Such vibrations remain localized, for all times, and there is 
no transport of energy through the lattice. Our general concepts and techniques 
extend to other systems, such as disordered, nonlinear Schr6dinger equations, 
or randomly coupled rotors. 

KEY WORDS:  Localization; invariant tori; KAM theory; disordered 
systems. 

1. INTRODUCTION: GENERAL IDEAS ON LOCALIZATION IN 
LINEAR AND NONLINEAR SYSTEMS 

Localization is a physical phenomenon observed in the context of wave 
propagation through disordered media. When the disorder is sufficiently 
large certain types of waves get trapped, and wave propagation is 
anomalously slow or impossible. Localization was first analyzed by 
Anderson. (1) He studied the propagation of the wave functions of electrons 
in a random array of scatterers, the impurities or defects in a metal. This 
problem is relevant for a theory of electrical conductivity in disordered 
metals. 
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In this paper, we analyze a related problem. We study the classical 
mechanics of a vibrating crystal lattice./2) We assume that the crystal lattice 
is disordered, in the sense that masses of and/or couplings between 
oscillators are random. We study the propagation of vibrations, i.e., sound 
and heat propagation, through such crystals. In the approximation, where 
the crystal is harmonic, our problem is mathematically closely related to 
the one studied by Anderson; see Ref. 3. However, crystals are never 
strictly harmonic. The main point of our paper is to introduce 
mathematical concepts and prove some results which we hope will lead 
toward an understanding of localization in disordered, nonlinear dynamical 
systems, such as disordered, anharmonic crystals, nonlinear Schr6dinger 
equations with a random potential, etc. 

Next, we describe the systems which we wish to study in more detail. 
At each site j of a crystal lattice, here chosen to be 7/d, a classical oscillator 
(an atom or ion) is attached. Its configurations are described by vectors 
qj~ N ~. The equations of motion of these oscillators are given by 

o 8U 
qj = --~o~qj + E f o ( q ; - i  q j) --~qJ' (q) (1.1) 

where f,j and 8U/Oqj are of short range, e.g., 

82U 
f , j=O = - - ,  unless [i- j l  = 1 (1.2) 

8qiSq j 

The matrices ~2 and f• are independent, identically distributed (i.i.d.) n x n 
random matrices with smooth distributions of fast decay at infinity which 
have their support on positive matrices. The most interesting case for o 
crystal physics corresponds to ~o s -  0. The potential U of the harmonic for- 
ces is assumed to be analytic in the position variables (qj)j~ z, and satisfy a 
bound 

0 ~< U(q) ~< 0([q[ 4) (1.3) 

as 

( ~  \ t/2 
Iql = [qjl 2) --+ 0 

For ease of notation, we henceforth set 

n = 1 (1.4) 
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rather than n = d(--2 or 3) as would be appropriate physically. But our 
methods and results clearly extend to the more general case described 
above. 

First, we review some of the main results for harmonic crystals, with 
U(q)=0.  Equation (1.1) may be rewritten, in more compact notation, as 
follows: 

0j = _(O2q)/ ,  js2~ ( g = 0 )  (1.5) 

where f22 is the Jacobi matrix given by 

- f o ,  if l i -  j[ = 1 

0 7  
(s .= co; + ~ f , i ,  if j =  i (1.6) 

k:  Ek - il ~ 1 

0, otherwise 

Here fv = fji and c~ are i.i.d, non-negative random variables with smooth 
distribution of fast decrease at infinity. It follows that f2 2 is almost surely a 
positive, self-adjoint operator on /2(Z"), the Hilbert space of square-sum- 
m a n e  sequences on yd. If we define - A f  to be the off-diagonal part of Q2, 
and 

v(j) - ~ 7 + ~ fkj (1.7) 
k:  ]k Jl  = 1 

then 

Y22 = H -  = - A f +  v (1.8) 

is the Hamiltonian of Anderson's tight binding model describing the 
motion of a quantum mechanical electron through a crystal lattice, 7/a. This 
is the system which Anderson considered in Ref. 1. For  rigorous results see 
Refs. 4-6. 

Under the assumptions described above, the general solution of the 
equations of motion (1.5) is given by 

q(t) = cos(f2t) �9 qo + sin(f2t) (2 ~' Po (1.9) 

where q = (qj)j~ ~d, qo = q(0), p = q, Po = 0(t = 0). 
We see that the analysis of the time evolution of a disordered har- 

monic crystal can be reduced to the spectral analysis of the Jacobi matrix 
f22. Let us therefore review the main results of that analysis. 

0 
(a) If % - 0  (the case of main interest in crystal physics) and the 

disorder, b, in the distribution of f~ is large enough (where 
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6 = [sup(dO/df)(')]- 1, and &b(')is the distribution off ,  j), then there exists 
2 such that the spectrum of 122 in the interval (co2, oo) is almost a finite coc 

surely pure point. More precisely, the spectrum of 122 in (co~, oo ) consists of 
simple eigenvalues (the squares of the normal frequencies of the crystal) 
which correspond to normal modes, q~., that decay exponentially, as 
IJ] -+ oo. 4 

(b) If ~j has a smooth distribution of sufficiently large disorder, the 
entire spectrum of ~r is pure point, consisting of exponentially decaying 
eigenfunctions, ql. See Refs. 4-6 for proofs. 

We remark that, in one dimension, arbitrarily weak disorder suffices to 
arrive at the conclusions in (a) and (b), and co2 = 0. 

In this paper we consider the situation described in (b), but the 
following remarks also hold if 122 is as in (a), but we restrict the states of 
the system to belong to the spectral subspace of ~e~2 associated with the 
interval [co~ + e, oo ), for some e > 0. Then we have the following: 

(1) Equation (1.5) has a complete, orthonormal system of periodic 
solutions, 

cos(coit) q~, sin(coit) q}, i~ ya (1.10) 

with periods 27r/co~. The normal modes, q~, are eigenfunctions of 122 
localized near i ~ Z  d and decreasing exponentially, as lit ~ oo, 
corresponding to the normal frequencies coi. Moreover, 

~ ~ k-~i~qjqj- ( a n d ~  ~ ~=6j,)qjq, (1.11) 
j i 

(2) Every solution, q(t), of (1.5) is a linear combination of the 
solutions (1.10), i.e., 

for some finite, real coefficients Q~, P~. 
The conserved total energy of the trajectory q(t) is given by 

1 
E ~  - 2 i Z  (p2 jr_ (j)2Q2) ( l A B )  

4 For rigorous results see F. Delyon, H. Kunz, and B. Souiltard, Ref. 4, for d = 1, and Refs. 5 
and 6 for d~>2. 
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We define a torus ?-oo(~) by 

T~ P~):P2+co~Q~-2e~<oo, i~z  a} (1.14) 

Then every q(t), given by (1.12), describes a quasiperiodic motion on an 
infinite dimensional torus, ~-~(~), and, for E <  ~ ,  T~(~) is compact (i.e., 
essentially "localized" in a finite region of yd). 

(3) We propose to measure the spreading of the energy of lattice 
vibrations, originally localized near the origin of Z d, by the quantity 

R2(t) =-1 ~ [j12{p2(t)+Zq~(t)f22qj(t)} (1.15) 
- 2 j~za i 

where pj(t)=-Oj(t). We may introduce a diffusion constant 

D(qo, po) =- tim t-'R2(t) (1.16) 

with qo = q(0), Po = 0(0). This quantity is analogous to the diffusion con- 
stant introduced in Anderson's tight binding model, (1~ where it is propor- 
tional to the electrical conductivity; see Ref. 5 for results. 

More generally, one might study the time-dependence of arbitrary 
moments of the energy density, p~(t) + Zi qi(t) f2~qj(t), which we denote by 
R(')(t), n = 2, 4,...; R(2)(t) = Rz(t). For disordered, harmonic crystals, under 
the hypotheses specified above, one can easily show, using the super- 
position principle (1.12), that for initial conditions localized in a bounded 
region, i.e., q0 j=P0j=0 ,  for sufficiently large values of IJ] (J~Zd),  all 
moments R(")(t) remain uniformly bounded in t, as Itl ~ o o i  and hence 
D(qo, Po)=0 (absence of diffusion). Thus there is no transport of energy 
(heat, sound) in such systems. 

In nature, crystal lattices are never perfectly harmonic. Realistic 
equations of motion contain anharmonic forces, i.e., U(q) r 0, with U as in 
(1.2), (1.3). As an example of a typical, anharmonic potential used in 
crystal physics we mention 

U(q) = ~  2juj(qj)+ Z f(ij>(qi-qj) (1.17) 
j ( i , j )  

where uj(q) and f(,,j>(q) are bounded by const [q[4 as Iq]-~ 0, 2j > 0, and 
(i, j )  ranges over nearest-neighbor pairs of Z a. The equations of motion 
(1.1), i.e., 

__~-~ 2 (~U 

f2Jiqi - ~qj (q) (1.18) l 

4j = P j, j ~ Z a 
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are Hamiltonian equations of motion derived from the Hamilton function 

We are interested in understanding the qualitative behaviour of the 
solutions of (1.18) when the disorder of s 2 is large, specifically in situation 
(b) described above. We want to know whether the behavior of the 
solutions of Eq. (1.18) is qualitatively similar to that of the solutions of the 
linear equations of motion (1.5) which we have described in points (1)-(3), 
above. If there were only finitely many degrees of freedom (replace Y d by a 
finite lattice) we could use well-known theorems to show the following: 

(1') (In the vicinity of an isolated, stable equilibrium point) there are 
periodic solutions of the Hamiltonian equations of motion derived from a 
Hamilton function of the form of (1.19)/7~ 

(2') If the initial conditions q0, Po are sufficiently small and the 
eigenvalues of 0 2 satisfy some nonresonance condition (depending on 
qo, P0) then the solutions of Eqs. (1.18) (for 77 d replaced by a finite lattice) 
are quasiperiodic motions on &variant tori. This can be proven with the help 
of the Kolmogorov-Arnol 'd-Moser  (KAM) theory.(S~ 

The questions of interest to us in this paper are whether results (1') 
and (2') can be extended to infinitely many degrees of freedom, as 
described above for linear systems. Our main result concerns the construc- 
tion of quasiperiodic motions on infinite-dimensional, compact tori for 
Hamiltonian systems with Hamilton functions related to that in (1.19), for 
a "large" set of matrices, f2 2. Our construction is perturbative and is based 
on an extension of the KAM techniques. 

In addition to the questions concerning localized, periodic solutions 
and compact invariant tori we should ask the physically more important 
question concerning transport o f  energy in disordered, classical, nonlinear 
crystals, for a large set of localized initial conditions of small total energy 
and for almost all s 2 . More precisely, we propose the following: 

(3') Consider solutions of the equations of motion (1.18) of finite 
total energy, with initial conditions localized near the origin. Does the 
quantity R2(t), introduced in (1.15), remain bounded in I tl or diverge more 
slowly than It[, [i.e., D(q o, Po)=0,  "absence of diffusion"], as Itl ~ 0% for 
almost all s 2, provided the disorder is large? 

For nonlinear systems, we have no such result which is valid for 
arbitrary initial conditions of sufficiently small total energy. We will show 
that, for a class of models similar to those described above, near any 
localized state there is a state which remains localized for all time, for most 
choices of (2 2. The localized states we will construct lie on infinite-dimen- 
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sional, compact invariant tori. However, such tori presumably form a rather 
sparse subset of (finite-energy) phase space. As in the finite-dimensional 
case, our KAM theorem makes no statement about the motions 
corresponding to remaining initial conditions, and, indeed, at least some of 
these trajectories are expected to drift far away in the phase space (Arnol'd 
diffusion; Ref. 9) if the number of degrees of freedom in the system 
exceeds 2. 

An important step in understanding these motions in the finite-dimen- 
sional case was provided by Nekhoroshev, ~ who showed that, even if 
these motions do not lie on invariant tori, their rate of drift is so slow that 
they might well be mistaken for quasiperiodic motions experimentally. 

We hope that a similar result will hold in infinite dimensions. More 
precisely, given an arbitrary localized initial state and an arbitrary random 
matrix, s 2, we would like to show that if the state is not localized for all 
times, it takes a very long time to escape from some large finite region, in 
the sense that R2(t) grows very slowly in Itl, 

In the case of one-dimensional systems, our hopes are based on the 
following considerations. The random matrices, D2, to which our theorem 
does not apply are excluded because they contain severe resonances. These 
resonances occur, for instance, when the diagonal part of Q2 which we call 
the "random potential" has nearly identical values at different sites. In 
elementary quantum mechanics one finds that resonances between the 
eigenvalue spectra of subsystems localized near two distinct potential wells 
lead to a much enhanced tunneling rate when the systems are coupled. 
Similarly, successive resonances between the eigenvalue spectra of matrices, 
(2 2, associated with distinct subsystems of oscillators lead to rapid transfer 
of energy from one subsystem to another when they are coupled. However, 
as in the Anderson tight binding model, (1,5,6) the spectra of random 
matrices, f2 2, associated with finite subsystems will be resonance free over 
arbitrarily large regions localized far away from the origin of 77 J, with 
probability one. Such regions suppress tunneling and act as barriers against 
energy transport. For, in resonance-free regions the system can be 
canonically transformed into an integrable one, up to a very high degree of 
approximation/1~ Since the motions in these regions lie very nearly on 
invariant tori (i.e., remain localized), they form indeed strong barriers 
against the transport of energy from one part of the system to another. If 
these nonresonant regions are sufficiently dense, one hopes to show that 
the motion is (approximately) localized in some increasing sequence of 
finite regions, for longer and longer times, leading to very slow growth of 
R2(t) in Itl. 

There are unfortunately several gaps in this picture. First, it is not 
clear exactly how one should define the nonresonant regions. While it 
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seems likely that a large region containing only a few very sparse resonan- 
ces still forms a very effective barrier to energy transport, as is the case for 
linear systems, (3-6) we cannot yet prove this fact. If, on the other hand, we 
attempt to construct our barriers using only regions where the potential is 
entirely free of resonances, the density of such regions becomes much 
smaller, and we have a much harder time restricting the region in which 
the state is localized to a reasonable size, as It1 becomes very large. (For 
large, but finite It1, see, however, Ref. 10.) A second problem arises from 
the fact that, although a region of the system may be nonresonant initially, 
resonances may develop within the region as the trajectory evolves, making 
the barrier more porous. 

Our paper is organized as follows. 
In Section 2, we introduce a class of models of disordered, anharmonic 

crystal lattices which we are able to analyze rigorously, and we state our 
main results on the existence of some infinite-dimensional, compact 
invariant tori. 

In Section 3, the proofs of our main results are outlined. (Some 
mathematical details on these and related issues will appear elsewhere.) 

In Section 4, extensions of our techniques and results to other dis- 
ordered systems, such as the nonlinear Schr6dinger equation, nonlinear 
equations for waves, e.g., classical spin waves in disordered magnets, or 
systems of coupled rotors, are described, and some open problems are dis- 
cussed. 

2. S T A T E M E N T  OF THE M A I N  RESULTS 

Before we give precise statements of our results we introduce and 
motivate a special class of Hamiltonian systems with infinitely many 
degrees of freedom. 

We recall that, under hypotheses described in Section 1 [see case (b)], 
a linear disordered system, with equations of motion given by (1.5) can be 
solved explicitly in terms of a discrete infinity of normal modes, q}, which 
are given in (1.10). The normal modes, q), are the eigenvectors of the ran- 
dom matrix f22: 

f22q~=o.~2q~., ~o2>0 (2.1) 

They decrease exponentially in [Jl and are localized near i s  2 a. Moreover, 
they are orthonormal and complete, i.e., 

2 q~q~ = 6ik and ~, q)q~= @ (2.2) 
j E  Z d i ~  Z d 
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Therefore, the change of variables, 

(q, P) ~ (Q, P) 

given by 

qj= ~ Q,q~ 
i E  ~ d  

&= 2 I%< 
(2.3) 

is 1 - 1 and symplectic, as follows directly from (2.2). In terms of the (Q, P) 
variables the quadratic Hamiltonian, 

- ] ~,/ 

is given by 

Ho(Q,P)=~ ~ (P~+~o~Q 2) 
i E Z  

(2.4) 

The higher-order potential U(q) is given by a function V(Q) which 
depends, of course, on g22. More generally, we consider perturbations 
V(Q, P) which may also depend on P If U(q) is of finite range, e.g., as in 
Section 1, (1.17), then V(Q, P) is short range, in the sense that 

02V 
~<const e ml,--kl (2.5) 

for some m > 0, where Zi = Qi or P~, provided (Q, P) are in the subset of 
phase space given by 

{(Q,P):P~ +~~ foral l  i} 

Next, we note that, the larger the disorder (i.e., the more random the 
matrix (22 is), the larger the decay rate m will be. (4'5) Hence, for very large 
disorder, it is quite reasonable to assume that V(Q, P) is of finite range, i.e., 

02V 
o~-.~ ~zk(Q,P)-O, unless [i-kf<~ (2.6) 

for some finite, positive ~. 
Note that, by (2.1) and (2.3), the frequencies, ~oi, and the functional 

V(Q, P) are really functions of the random matrix (22, i.e., random 
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variables. In order to simplify our notations we wish to assume, however, 
that the basic random variables are the frequencies co~, that they are only 
weakly correlated, for large separation, and that V(Q, P) is essentially 
independent of (co~)~ z~. While this assumption is merely made for con- 
venience, the assumption (2.6) is much more severe, and our present 
methods do not cover interactions, V, for which 02V/OZ~Zk decays only 
exponentially, or more slowly, as the case may be in a large class of 
physical systems. (Such systems display much more "rigidity" than we can 
handle at present.) However, the class of Hamilton functions to which our 
methods apply describes physical systems, like (i) thin surface layers of 
atoms deposited on a (disordered) crystalline surface, (ii) systems of "bed 
springs," etc. 

From now on, the contents of this paper are mathematically rigorous. 
First, we give a precise statement of our results for the Hamilton function 

H(Q,P)=~ ~ (P~+~o~QZ)+a ~ f<,j>(Qi, Qj;P~,Pj) (2.7) 
i ~ Z  d ( i , j )  

introduced above. The interactions f<zj> are assumed to be analytic on 
some domain specified below and are O(Q 4 + p4).~ We also assume the fre- 
quencies, coi, to be weakly correlated, e.g., to be i.i.d, random variables, 
with a smooth distribution, such as 

exp [ 
dp(~i) = x/~; 

O, 

for ~o~ > 0 

if coi~<0 

(2.8) 

We can, however, handle a general class of smooth distributions with 
correlations of short range between different coi's. 

Introducing the action-angle variables for the harmonic oscillators 
through the equations 

Qi = (I]~o~) 1/2 cos ~b~, Pi = -(~oili) 1/2 sin ~bi (2.9) 

the Hamilton function H(Q, P) of (2.7) takes the form 

H(I, ~b) = ~ co~I~ + 8 ~ f<i,;>(Ii,/j; ~bi, ~bi) (2.10) 
i ( i , j )  

Since f<i,j>(Q~, Q j; Pi, Pj) is O(Q4+ p4), for all (i, j ) ,  we conclude from 
(2.9) that 

f<i,j>(I, ~)~0(I2), for all (i , j)  (2.11) 

5It is enough to assume that the f(i.j> are O(IQI~+ ]P[~), for any 6 > 2. 
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We must, however, avoid points Ii = 0, since the change of variables (2.9) 
and hencef<ij>(/, ~b) fail to be analytic at such points. Finally, we note that 
f<i,j>(L ~b) will, in general, be a function of (coi), as discussed above [see 
also (2.9)], but we ignore this dependence. Our reason for doing so comes 
from the observation that the only place this dependence may cause 
trouble is at coi= 0, for some i, and in the course of our construction a 
neighborhood of these points will be excluded anyway. 

We shall consider initial conditions strongly localized in space. So we 
define 

~ = e x p [ - l j l  d+~] (2.12) 

with c~ > 0 (arbitrarily small), and ]Jl - Z~= i I,LI, jE 7/d. The exact choice 
of the sequence (~)j~ zd is not important--inside any finite region in Z a it 
could be chosen quite arbitrari ly--but what is necessary for the present 
techniques to work is the very strong decay with distance from the origin 
that our choice exhibits. As with the interactions, we would like to choose 
the decay of (~)j~ z~ to be only exponential in IJl, but our methods do not 
encompass this case, yet. (The best we might hope to understand, at 
present, is a decay like e x p [ -  ]jl 1 + =], ~ > 0.) 

Given some p = (pj)j~ z~ in (E+)z~, w and 6 in ~+,  and some subset N 
of Nz~, we define 

W(p, 6, w; N) =- {(I, ~b, co) ~ C ~' x C z~ x CZ': I I j -  ~ l  < Pj, [Im ~bjl < 6, 

and jcoj-co}[ < w, for some co'eN, for all j i n  Z ~} (2.13) 

This defines suitable complex neighborhoods of tori in the product of phase 
and frequency space. Let po ~-�88 and N O = R zd. We assume that there 
exist w ~ and 6 o such that the Hamiltonian (2.10) is analytic on 
W(p ~ 6 ~ w~ NO). With our assumption that f<i,j> does not depend on co, 
we can choose w ~ to be anything we like. Note that the domain 
W(p~176176 avoids the points { I : I j = 0 ,  for some j}; where 

f<,j>(I~, Ij;  4;,, ~bj) may fail to be analytic. Also note that, since 

f <ij>(I, ~b)~ O(I 2) 

we have 
sup lf<~d>(I, ~b)j ~< Kexp[- -2( [ i [  1) d+~] (2.14) 

W 

for some K >  0. We can assume K has any finite value we want, just by 
redefining the constant e in (2.10) to include a factor of K. For later con- 
venience, we set 

K =  (24d 2) 1 
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Our principal result is as follows: 

T h e o r e m  T. There exists eo > 0 such that, for ~ < ~o, there is a set, 
(2(/~ of ("nonresonant") frequencies, co, with Prob(f2(/~ arbitrarily close 
to one (depending on e and /o) such that if co el2(/~ then there is a 
sequence, (~)jE ~e, of action variables with the properties that IL- < p0 
and that the trajectory of the canonical flow generated by the Hamiltonian, 
H, of (2.10) with initial conditions (I, ~) (for some ~ :e  [0, 2re), Vje 27 d) lies 
on an infinite dimensional invariant torus, Y(I). 

Remarks. (1) We see from the proof below that for any po in t / '  on 
the infinite-dimensional torus, LI}-~l  < pO. 

(2) While this theorem tells us that, given /o, we can find an 
invariant torus nearby, for most choices of frequencies, o3, it unfortunately 
does not tell us explicitly how the sets f2(/~ are related to each other, for 
different choices of/o, nor is it easy to determine whether, for some fixed/0, 
a given co belongs to t2(/~ or not. (Infinitely many nonresonance con- 
ditions must be checked.) 

(3) Using the ergodic theorem it is easy to extend Theorem T to con- 
struct infinitely many infinite-dimensional, compact invariant tori with 
probability 1, for small enough e. However, we have no good idea of the 
structure of the set of all invariant tori in phase space, for typical frequen- 
cies co. For this reason, Theorem T does not tell us how the quantity R2(t), 
introduced in (1.15), depends on t, as [t[ --, oo, for a large class of initial 
conditions of finite energy, but only for very special initial conditions, 
(I, ~)e  71-(7), for which it remains bounded. 

(4) Results of the form of Theorem T can also be proven for systems 
of coupled rotors; see Section 4. In such models we can, in principle, con- 
struct many invariant tori, since the unperturbed frequencies depend on L 
(J. Bellissard has informed us tha~ M. Vittot and he have independently 
obtained similar results. (m) 

3. A SKETCH OF THE PROOF 

The proof of Theorem T uses the method of sequential canonical 
changes of variables developed by Kolmogorov, Arnol'd, and Moser, (8) 
with two novel additions: 

First, we introduce a sequence of length scales, Lk,  z oo, and at the kth 
stage of our iterative procedure we consider only sites j whose distance 
from the origin is less than Lk; [for a definition of all inductive constants 
see a list further in this section]. Secondly, although the integrable part of 
our Hamiltonian does not satisfy the usual "anisochronicity" assumptions 
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of the KAM theory, we are able to control the small denominators we 
encounter by adjusting the frequencies themselves, rather than the initial 
conditions. (This would be different if we studied systems of coupled rotors, 
for example.) 

A standard way of showing that a trajectory of a Hamiltonian, H, lies 
on an invariant torus is to construct a canonical transformation, C, such 
that the Hamiltonian H o C is a function only of the action variables. We 
construct this transformation inductively, attempting, at the kth stage of 
the inductive process, to "kill" only those parts of the interaction, f<ij>, 
with the points i and j lying inside the box BL~, which consists of all sites j 
with IJ] < Lk. More precisely, one has the following: 

Proposition 3.1. There exists eo>0  such that if ~<e  o then, for 
every k>~0, there exists a set N ~___ ~ ,  and a canonical transformation, 
Ck, which is analytic and invertible on W(p k, 6k, wk; N k) and maps this set 
into W(p~ ~ w~176 The Hamiltonian H k = H ~  has the form 

coili+hk(I, co)+fk(I,(),CO)+e ~ f<id>(Ii, Ij,(9,,~j) (3.1) 
i ~ Z  d { i , j ) l  

dist({ i,j),0) >/L k 

where h k and f k  depend only on (Ij, ~j, ooj), with ]jl ~< L k. Furthermore, 

sup tfkr < e ~ 

sup lah /aIjl < e )  
(3.2) 

sup 102hk/OI~Ocojl < ~ 

sup 1O2h~/OleOljl < (~ 

where in each case the supremum is over W(p k, (~k, wk;Nk). Writing 
Ck(I, ~b) = [ I +  ~W(/, ~b), ~b + ~k(L ~b)], we have 

k--1 k--1 
I ~ ]  ~< ~, (era) 7/8 and I ~ l  ~ E ( ern)3/8 (3.3) 

m = r e ( l )  m = r e ( l )  

[Here re(l) is defined by the inequalities Lm(~)~< Ill <tm(a+~.]  Further- 
more, Ck = identity at sites, j, with Ijl > t ~. Finally, 

k 
Prob (N k)/> 1 - ~ (#)~, for some ~c > 0 

j -O  

The various inductive constants appearing in the Proposition have the 
values displayed in the following list: 

(a)  ~k =/3(4/3)k; /3k bounds the size of the interaction after k iterations. 
(b) 6 ~ + ~ = 6 k -  b k =- 6 ~ -  6~ + 1)2]; 6k measures the size of the 
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analyticity domain in the angular variables after k iterations, and 
b k the amount by which the domain shrinks in the (k + 1)st step. 

(c) w k = (ek)-2~; w k measures the size of the analyticity domain in the 
frequency space. 7 is a small positive constant-- the same one 
appearing in the definition of the resonant sets, R k. 

(d) ~jok +1 = 2  -3-kpj if IJ[ >Lk+l  
- 3  /,- = L k + l  = 2  Pi if IjI<~L k+l, where i is any site with lil 

(Note that this definition is independent of the site i chosen.) p~ 
measures the size of the analyticity domain for the action 
variables. Recall that po_=/o/4 , where /o  is given by (2.12). 

(e) L k= {(1 + fl)Iln ekl/2 } l/d+ ~; L k determines the size of the region 
we must consider at the kth iterative step. Here fl is a small 
positive constant, c~ is the constant in (2.12) which determines 
how much faster than exponentially our initial conditions decay, 
and ~k is defined in (a). 

(f) M k= 2(b k) l lln ekl; M k determines the number of Fourier coef- 
ficients we must consider at the kth step of the iteration, b k is 
defined in (b). 

(g) ( 5 ~ = 0 i f l j l > ~ L  k, 
_ _  k - i  --~,m=m(j)(em) 3/8 if I j I < L  k [-Here, m(j)  is defined by 

Lm(J) ~ ]Jl < Lm(J)+ 1.] 
. k _ m i ~ r ~ - ,  1 ~ - a  L k (h) ]'~jl-- la[~m=m(j) (em) 1/4, ~2,~ =,~l~ (e'~) u4 ] if JJl < and Jll < L ~, 

= 0 otherwise 
r~ c-v~-126J(ek)-~ exp[2m(d+cO(LJ+l)~+~-l] ,  for (i) ( ~  ~ = ~ = ; = o  

some C < 0. 

We also collect several other frequently used symbols, so that the 
reader may consult this list whenever they occur. 

(j) Nk: At each stage of the iterative process we are forced to exclude 
a small set of resonant frequencies, co. N k is the set of nonresonant 
frequencies remaining after k steps. (We recall that N o = ~ d . )  

(k) R~: The resonant frequencies excluded at the kth iterative step. 
For the definition of R k see (3.8). Note that N ~ = Nzd\l,)~= 1 Rj- 

(1) Zk: In constructing the canonical transformation, Ck, in 
Proposition 3.1 we will consider only a finite set of Fourier coef- 
ficients of the interaction terms in (3.1). These Fourier coefficients 
are labeled by vectors, v, in a finite subset ?Ok of 2 ~, 

(m) (5k: These are the frequencies of the motion generated by the 
"integrabte piece" of the Hamiltonian H k. See (3.4) for a 
definition. 

(n) Bzk: The box of size L k, i.e., all sites j e  Z a, with IJl < L  k. 
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Theorem T follows easily from Proposition 3.1. Let (Ik(t), ()k(t)) be the 
solutions of Hamilton's equations with Hamiltonian, H k, and initial con- 
ditions (/o, ~b0) (~b0 an arbitrary element of SiZe). The bounds in (3.2) imply 
that the points (Ik(t), ~bk(t)) remain in W(p k, 5 k, wk; Nk), for 0 ~< t ~< T k= 
(e~)-t/a, and that they obey, for the same time interval, 
It(t) = ~ + 0((ek)3/4), and ~b~(t) = 051(/~ , co) t + ~b~ + O((ek)3/8), where 

Oh ~ 
&~(I, co) =- co, + ~ (I, co) (3.4) 

These results are shown by using Cauchy's theorem to bound 
derivatives like [Ofk/Oly] by C'  (p~)-i  ek on any domain contained in 
W(p k, 6 ~, wk; Nk), say W(p~/2, 6 k, Wk; N~). If one inserts the values of pk 
and e~ given in (d) and (a) above and derives analogous bounds on ~fk/O~j 
one arrives at the stated expressions. 

Let (I(t),d(t)) be the solution of Hamilton's equations with 
Hamiltonian g(I, O) and initial conditions C~(/~ ~b~ and (ik(t), q;~(t))= 
Ck(/~ eS(/~ co) t+~b~ The bounds in (3.3), and the fact that canonical 
transformations take solutions of Hamilton's equations to solutions of 
Hamilton's equations imply IIj(t) - f~(t)l < O((e~) l/a) and I~bi(t ) - ~( t ) l  < 
O((~k)l/*), for all 0 ~< t ~< Tk= (e*) -~/s. We show below that 

tim C~(/~ ~5'(/~ co) t + ~o) 
k ~ c o  

exists for all t, and all co e 0h N k, thereby obtaining an invariant torus, and 
completing the proof of Theorem T. 

The proof of Proposition 3.l begins by noting that we can choose H ~ 
to be our initial Hamiltonian and C O = identity. [The peculiar choice of the 
constant K in (2.14) was to insure that I f  ~ <e, here.] Assuming the 
proposition holds for integers less than or equal to k, we sketch the con- 
struction of Ck + t- 

The transformation C~+I is of the form C~o C k, and since Ck is 
known, we need only construct C k. If H k were integrable, then all its trajec- 
tories would lie on invariant tori and we would be done. To show a system 
is integrable we attempt to solve the Hamilton-Jacobi equation 

for functions X(I', O) and h(I'). If such a solution exists (globally) we 
obtain a canonical transformation by inverting the equations 

~?Z 0Z" 
I = - -  a n d  ' 

822/,~2/3-4-2 
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to express I and ~b in terms of I' and ~b' (or vice-versa), and this canonical 
transformation gives a set of action-angle variables which transform H k 
into /~. While we cannot solve the Hamilton-Jacobi equation exactly we 
obtain a good approximate solution by noting that since H ~ is close to 
integrable we expect the desired change of variables to be close to the iden- 
tity, and thus attempt to write 

Z(I', ~b) = I" q~ + S(I', r 

(remember that I'.(b is the generating function of the identity transfor- 
mation) and assume that S is O(ek), the amount by which H k differs from 
an integrable system. 

Now the Hamilton Jacobi equation takes the form 

/ , c3S ~b)=~(I ')  H*' [I  + ~ ,  

and if we expand the left-hand side and discard quantities of second order 
in the small quantities ek and S we obtain 

coil; + ~ cSk(I ', 6o)" c3S 
i , ( r ,  r 

+ fk(I', O, 6o) + ~ f<id>(I;, I); ~bi, ~bj) = h'(I') (3.5) 
( i , j )  

dist((i , j) ,0) >/L k 

with c5 k defined by (3.4). We note that, for dis t ( ( i , j ) ,O) )L  k, 
ef<i,j>~O(ek), so we are justified in discarding terms like 
e(Of<ij>/~I')~S/~r Furthermore, by (2.14) we see that if Iil or IJl is 
greater than or equal to L k+ l _= const. ]ln ekl 1/a+~, the constribution of the 
terms f<~d > to the sum on the left-hand side of (3.5) will be of higher order 
in e k and thus may be discarded without worsening the approximation. 
S ince f  k and f<e,j> are periodic functions of ~b, we can solve (3.5) by means 
of Fourier series and we find 

S(I',qJ, co) i ~ [f~(I" ~~ c~162 = (3.6) 
~ o  c5(I', co)-v 

Here, the fv'S are the Fourier coefficients o f f  k, the jT~'s are the Fourier coef- 
ficients of Z<~,j>,Lk+~>H.IjI>~LJ<~.J>' and the sum runs over all nonzero 

vectors, v, in 7/Z~. Also note that the generating function will depend on the 
frequencies, and we denote this dependence explicitly in (3.6). 

In general the sum in (3.6) will diverge. To cure this problem, we first 
reduce the infinite sum to a finite one. Note that, since fk  is analytic on 
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W(p k, 6 k, wk; Nk), Cauchy's theorem implies If~(/')l < e %  ~kl~l. A similar 
remark holds for If)l.  Thus, terms with Ivl large (here Ivl =Z~  [v~l) con- 
tribute little to the sum, and since we have already discarded terms of 
O((ek) 2) when linearizing the Hamilton Jacobi equation, we can discard all 
terms in (3�9 with Ivl >/M k + ~ -  const Iln ekl, and hope not to worsen our 
approximation�9 

Because we have also discarded those parts of the interaction coming 
from distances more than L k+~ from the origin we can restrict the sum in 
(3.6) to vectors ve  X k+~, with 

~k+~{v~2~:O<lvl<M k+~, and vs=O if l i l ~ L  k+l} (3.7) 

With these restrictions, the sum in (3.6) contains only a finite number of 
terms, and a simple estimate shows this number is bounded by 
(2M k + 1 )(2L k + l)d 

The sum in (3.6) can now fail to be well defined only if the 
denominator in one of the terms vanishes. To prevent this, we exclude from 
consideration the (resonant) frequencies 

Rk={coeNk: thereex i s t sveN~+~such tha t l~k( I~  ~} (3.8) 

Here 7 is the same constant that appears in (c) of the list of inductive con- 
stants. We now set N~+~=Nk\R  k (the nonresonant frequencies at step 
k +  1) and attempt to define our canonical transformation on 
W(pk + 1, ilk+Z, wk + l; NK + 1). 

Condition (3.8) bounds the denominators in (3.6) only if I '  = / o  and 
coeN ~+1. However, note that for any (I', co') in W(p z,, ilk, Wk; Nk+l) we 
can write 

~sk(?,  co ' ) .  v = ~k ( /o ,  co).  v 

�9 { 1 - [(cSk(/~ co)- v) l(eSk(/~ co)" v - chk(I ', co')" v ) ]  (3.9)  

A little calculation using the fundamental theorem of calculus, and the 
bounds on derivatives of (5 k given by (3.2) shows that the term in square 
brackets in (3.9) is bounded in magnitude by 1/2, for e sufficiently small�9 
Thus, the denominator in (3.6) is larger than C' (e*)  7 on 
W(p~, g)k, wk; Nk + l ). 

The summand in (3.6) is now defined and bounded by C-(ek) 1-7, and 
we bound derivatives of 'S on domains smaller than W(p k, 6 k, wk; N k + 1) 
by combining Cauchy's theorem with our previous estrimate on the 
number of terms in the sum. In this way we find that I~?S/~?I~l and 
IOS/~3~bjl are bounded by C(p~) l(ek)l 7(2Mk+1) (2Lk+l)d and 
C" (6 k) - ~(ek) 1 - ~(2M k + ~)(2L~+l)d, respectively. 
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We can do even better than this if the site j satisfies [Jt > L k- In this 
case, when one differentiates the summand in (3.6), f~(I ')e i~r makes no 
contribution, since f~(I, O, co) depends only on (Ij, q~j), with IJl ~< L k. The 
derivatives of f~(I ')  can, on the other hand, be bounded by 
D~jexp[-2rn( lJ l -1 )d+~-6k lv l ] ,  using (2.14), where D~ is either 
C' (,Ojk.) -1 or c(3k) -1, depending on whether we differentiate with respect 
to I j  or ~bj. Using this estimate we see that when lJl > Lk the factor of 
(~)1 ~ in the bounds on derivatives of S can be replaced by 
e x p [ - 2 m ( l J l -  1 )d+~-b  ~ Ivl],  resulting in much better control of these 
quantities. 

By the analytic inverse function theorems, (~2~ the equations 
I=  I' + (c~S/O~)(I', q~, co) and O' = r + (~?S/OI')(I', ~, co) can be inverted to 
yield an analytic and invertible canonical transformation on 
W(pk+ 1 6k+ 1 wk+ 1; Nk+ 1), provided ]~?S/Ob~I ~p~ and I~?S/~?I'jl ~6  ~. The 
bounds on derivatives of S in the preceding paragraphs, and the explicit 
forms of p~ and ~ in the list of inductive constants immediately imply 
these inequalities, so we get 

Ck(/', ~b')= (I' + s ~b', co), ~b' + A(/', ~b', co)) (3.10) 

Note that Z(I', ~b', co) = (~?S/~?q~)(I', ~', co) and A(I', r co) = 
-(~?S/OI')(I', ~, co). So our bounds on the derivatives of S give bounds on 
the canonical transformation. Furthermore, since C ~ + 1 -  C~ o C ~, the 
bounds on ~ and A [and the observation that C ~ maps W(p k+~, 6 k+l, 
wk+l; N~+ 1) into W(p k, 6 k, wk; Nk)] imply the bounds on C k+~ stated in 
(3.3). If we in addition use the fact that S does not depend on (I), ~b/) with 
l j[ ~> Lg+l ,  we see that C g, and hence Ck +l will reduce to the identity at 
these sites. 

These bounds also imply 

ICk + 1(1 ~ @) -- Ck(1 ~ q~)l < O((~k) 1/4 ) 

so that these transformations converge, as k ~ oe. 
The bounds on the probability that 0)e N ~+1 follow by noting that 

co ~ Nk\Nk+ 1 only if there is v e X k+ 1 such that [05~(/~ co). vl < (ek)?. If we 
could replace o5 k in this expression by co, the unperturbed frequency, the 
probability that co satisfied this inequality, for some fixed v, could easily be 
estimated by bounding a Gaussian integral. The estimates on derivatives of 
h k in the proposition are sufficient to show that on the set of co's where 
Icbk(/~ co)-vl < (8k) ?, the transformation co ~ ( 5  k is one to one and has 
Jacobian bounded by a constant independent of k and v. Thus, just by 
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changing variables in the Gaussian integral defining our probability 
measure, we find 

Prob( { co: [&k(/o, co). v l < (ak) ' } ) ~< C (2Lk +l)d ~ (3.11 ) 

and since there are at most (2Mk+~) c2L~'')~ vectors in Nk, we find that 
Prob(Nk\N k+l ) is bounded by (ek) ~ for some 0 < ~c < y, and the bound on 
Prob(N~+ 1) follows. 

It remains to verify (3.2). Write H ~ + ~ ( I ' , ~ ' ) = H ~ o C k ( I ' , ~ ' ) =  
Hk(I  ' + ~, O' + A) which is in turn equal to 

toe(I; + 2i(F , qY, co)) + hk(I ' + S(I' ,  q)', co), co) 
i 

+ f ~ ( I ' + E , O ' + A ,  co)+ ~" .f<</>(I' + E, ~b' + A) (3.12) 
<i , j>  

d i s t ( ( i , . / ) ,O)  >~ L":' 

If we now expand the last three terms in (3.12), using the fundamental 
theorem of calculus, use the fact that 2 i = A , = 0  if Iil > L  k + l  (because 
Ck= identity at these sites) and also note that Z~coS; = Y4co,(OS/~O,) and 
will thus cancel many Fourier modes of the interaction terms in (3.12), we 
find (3.12) takes the form 

H ~ + '(I', r = ~. co,I'~ + h k + '(I', co) +.[k + '(I', ~', co) 
i 

+ Z f<,,j>(I;, Ij, ~;, Oj) (3.13) 
( i , j )  

d i s t ( ( i , j ) , 0 )  > /L  k+ 1 

with hk+l ( I ' , o )=hk( I ' , co )+fo( I ' , oo )+~o( I ' , co ) ,  and fk+l(I',~b',co) 
having the rather complicated form 

[L(*', ~) +L(z ) Je  + X 
Ivl > M e+ l (i,.j) 

either Ii[ or  [j[ >~ L k~ l 
bul  not  bo th  

+g dsTi](r+sz, ,co) z ,+Z ds d, 
J I,J 

a 2 h  k e l  

x '--'~'Jz',z" ( + tZ,) . + ~ ~o ds 
( i , j )  

Lk ~ d i ~ t ( O , ( i , j ) ) <  L k+l 

o_ (I' + s2, qt) s~,, 

f<,,j>(I' + s,#) 

(3.14) 

with  ~b = ~b(I,. ~b', co). 
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The bounds on derivatives of h k+L are easily obtained from the 
bounds on fk,  f<i.i> and Cauchy estimates. [-Note that it is clear that 
hk+l(I ', (2)) depends on I; only if [il < Lk+ ~, since sT0 is a Fourier coefficient 
of a sum of termsf<id > with Ii[ and ]j[ < L k + l . ]  
Note that the bounds on r k+~ imply 

Io~k+ 1(/0 (2)) - -  cok(lO (2)) f ~ 0 ( ( ~ k ) 3 / 4 )  (3.IS) 

so lim~ ~ o0 chk(/~ (2)) exists if (2) e 0 k N  k. 
All that remains is to verify the first inequality in (3.2). Although the 

expression for fk+~ looks complicated it contains nothing unexpected it 
consists of terms arising from the fact that in linearizing the Hamilton-- 
Jacobi equation we discarded things of higher order in e k [this accounts for 
the last four terms in (3.14)3, terms with Ivl ~>M k+l [the first term in 
(3.14)], and terms that arose too far from the origin (the second term in 
(3.14)]. 

Using our observation that the Fourier coefficients of a function 
analytic on W(p k, 6 ~, wk; N k) decay as e -~klvl, and the fact that there are at 
most (2M) (2Lk+l)d vectors v with supp v c BL*+~ and with Ivl = M, the first 
term in (3.14) is bounded on W(p k+l, Wk+l;Nk+l) by 

'~ gk. M(2Lk'l)d. e-(ak-~k+~M < O((gk)2) (3.16) 
M ~ M  k+l 

The second term in (3.14) is bounded by noting that there are at most 
(CLk+I) d 1 terms in the sum, each of which is bounded by 
e" e x p [ - 2 ( L  k+~ - 2)d+~], SO the contribution of the sum is (e' ak+ ~). 

The third and fifth terms in (3.14) are bounded by noting that a 
dimensional estimate bounds ]r and I~J'<i.i>/c?Ijl by C. (p~) 1 e~ and 
C. ( p f ) - i  e x p [ _ 2 ( i j  I _ 1)d+~], respectively. The factors of =~j are boun- 
ded, using our observation that Zj = OS/O(~j, and we find that each of these 
terms is less than O((e*)3/2-"), where tt is a small, positive constant that 
can easily be computed from the list containing definitions of the inductive 
constants. 

Finally, the fourth term is bounded by using ~k, to bound the 
derivative of h ~, and the usual bounds on Zj, and we find it is less than 
o((~)~-.). 

Thus, if we choose e k+l =(ek) 4/3, (3.14) will be bounded by ~k+~, on 
W(p k+~, 0 ~+~, wk+~; Nk+~), completing the verification of (3.2) and the 
proof of the proposition. 

4. G E N E R A L I Z A T I O N S ,  C O N C L U S I O N S  

The techniques developed in this paper have some rather 
straightforward extensions to other nonlinear dynamical systems. They per- 
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mit us, in principle, to construct examples of invariant tori for the flows of 
some Hamiltonian systems with infinitely many degrees of freedom. We 
should like to mention some examples. 

4.1. Coupled Rotors 

In action-angle variables, the Hamilton function of a system of 
uncoupled rotors located at the sites of a lattice, 7/a, is given by 

ho(I)= ~ ~ (4.1) 
i s  ~a 

It is obvious that all motions of this system are quasiperiodic motions on 
infinite-dimensional tori. It is an interesting problem to study what hap- 
pens if an angle-dependent perturbation is added to ho. Thus, consider a 
Hamiltonian of the form 

H(I, O) = ho(I) + eU(I, (~) (4.2) 

where 
(32U 

- - - = 0 ,  if l i--j]>/3 (4.3) OZic~Zj 

for some finite /5. Here Z = I  or ~b. Condition (4.3) expresses the cir- 
cumstance that interactions between different rotors are of finite range. We 
also assume that U(I, (a) is analytic on a complex neighborhood, Wo, of 

{L ~b: 0 < I j< Io ,  0 ~<~bj< 2~, for all j} 

for some finite Io (arbitrarily large), and that on W o 

I U(I, o~)l ~< Ill J (4.4) 

for some sufficiently large 6 > 2. 
We note that h o satisfies a strong anisochronicity condition, namely, 

&oi (?ho 
~Ij -6 , j ,  where cog- c3Ii (4.5) 

and that it is useful to assume that 

(co/l ~)(I)<l/I  +' 
(4.6) 

a2u (I) 
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for some positive 6' and 6". Here 

and II111 is the norm of the infinite matrix A = (a~j)i,j~ ~d. These conditions 
show that it is possible to avoid resonances in a perturbative solution of 
the Hamilton-Jacobi equation to first order in e by restricting the action 
variables, I, to a suitable (resonance-free) subset of phase space which fills 
up a "large" subset of 

{(/, ~): 0 <  [/jl < e  -mJjl~+~} (4.7) 

for some c~ > 0. This observation permits us to start a KAM iteration of the 
type described in Section 3 and, under some additional assumptions on U, 
construct infinite-dimensional, compact invariant tori for the flow 
corresponding to the Hamilton function H defined in (4.2). In fact, for such 
systems one may be able to construct a family of invariant tori contained in 
the subset defined in (4.7) which has positive measure, with respect to the 
Lebesgue measures I~j~A dljdO/, where A is any finite subset of Z d, (this 
would be a result analogous to those in Refs. 12 and 13 which concern 
Hamiltonian systems with finitely many degrees of freedom). We have, 
however, not carried out the details of all the calculations required to check 
this. [We feel that conditions (4.4), (4.6) on U are a bit unphysical and 
that the systems studied in Sections 2 and 3 are somewhat more interesting 
and more realistic.-] J. Bellissard has kindly informed us that he and M. 
Vittot have independently studied systems of infinitely many coupled rotors 
which admit infinite-dimensional invariant tori.(11/ 

4.2. Nonl inear Schr6dinger  Equation w i t h  Random Potential  

The discretized nonlinear Schr6dinger equation with a random poten- 
tial has the form 

0 
i ~  ~'t(x) = E ( - d  + v) O, ] (x)  

+ 2~t(x) ~ V ( l x - y l ) I @ ~ ( y ) l  2 (4.8) 
y ~ d  

Here t ~ N is time, x, y,... are sites in Z d, A is the finite difference Laplacian 
on 12(Zd), v = (v(x))x~ zd is a random potential [the v(x)'s being, e.g., i.i.d. 
random variables], V is some positive-definite, deterministic "potential," 
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e.g., V ( l x - y l ) = 3 ~ y ,  and 2 > 0  some coupling constant. Identifying O(x) 
with (1/x/2)(q~ + ip~) we see that 

{0(x),  0 (y )}  = {~,*(x), ~* (y )}  = 0  

{O(x), tp*(y)} = --icS~y, (~9" = ~) 

(4.8) are Hamiltonian equations of motion, with Hamilton and that 
function 

H =  
x , y  ~ ~d  

+ ,~ 14,(x)l 2 g(x- y)10(y)l 2 } (4.9) 

Equation (4.8) arises in the theory of vortices in boson systems, where 
it is known as the Gross Pitaevskii equation, (15,16) in Hartree-Fock theory 
(see, e.g., Ref. 17), etc. The problem of analyzing the properties of solutions 
of (4.8) is a direct, "nonlinear" generalization of the Anderson problem, t~) 
It is interesting to study the following questions. 

(1) Existence of  stationary solutions. To find solutions of (4.8), one 
may make the ansatz 

~,(x) = e - 'mue(x ) (4.10) 

which solves (4.8) iff 

EuE(x) = [ ( - - ~  + V) uE](X) + ;~UAX) ~ V(Ix Yl) luE(Y)I 2 (4.11) 
y E Z  d 

Similar equations also arise in the theory of superconductivity./181 Let us 
look for solutions, ue, of the nonlinear eigenvalue problem (4.11) which 
have finite 12 norm. Since we have introduced a coupling constant 2, we 
may then normalize ue to satisfy 

]uE(x)42= 1 (4.12) 
X @ Z  d 

We have constructed solutions of (4.11) satisfying (4.12) for a class of 
potentials, v, for which the Schr6dinger operator - A + v has bound states, 
for small enough 2. The case where v is a random potential such that 
(v(x))x~ ~ are i.i.d. (e,g., Gaussian) random variables, with large disorder, 
is more difficult. Extending ideas in Refs. 5 and 6 and adapting the strategy 
in Section 3, it appears very promising that, for small 2, one may construct 
solutions of (4.11) for countably many values of E which are "close" to 
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eigenfunctions of - A  + v. We have, however, not checked all the details of 
this rather complicated construction (based on a Newton method). 

It would be interesting to estimate reflection and transmission coef- 
ficients for solutions of (4.11), for finite one-dimensional systems 
( z d ~  [ - - l , - - l +  1,..., 0, 1, 2,..., l]). B. Souillard informs us that he has 
some results in that direction. 

Concepts more general than stationary solutions are the following: 

(1') Time-periodic solutions. It is clear that, in general, Eq. (4.8) will 
have periodic-in-time solutions which are not stationary, but we have no 
interesting results on that kind of solutions. The same comment applies to 
the following. 

(2) Quasiperiodic solutions, invariant tori. So far, we have not been 
able to construct invariant tori for the flow corresponding to the Hamilton 
function H defined in (4.9). However, if in (4.9) we replace the term 

2 Zx,y ~ * ( x ) [ - d x y  + v(x) 6xy] ~(y) by 5~x ~x I~(x)l 2, where ( ~ ) ~  z~ are 
i.i.d. (e.g., Gaussian) random variables, and if V( Ix -Y l )  is of finite range 
then one can extend the KAM techniques of Section 3 to the present 
system to construct infinite-dimensional, compact invariant tori for a set of 
~ox's of large probability. Solutions of (4.8) which lie on such tori remain 
localized, for all times, e.g., in the sense that 

e("l(t) - [~9~(x)l 2 ~, [xl" ]~,(x)l 2 (4.13) 
x d x ~ Z d  

is uniformly bounded in t, for arbitrary finite n. We may introduce a dif- 
fusion constant 

D -  lim t IR(Z/(t) (4.14) 

By rescaling 2 we may always normalize initial conditions in (4.8) by 
requiring, e.g., 

E J~',_o(x)l ~= 1 
x ~ Z  d 

We conjecture the following: 

(3) Absence of  diffusion, for small 2 and large disorder. If the ran- 
dom potential v in (4.8), (4.9) has a distribution with sufficiently large dis- 
order and 2 is small enough then, for "most" initial conditions, 5 ~0, of 
finite support 

O - D ( O 0 ) = 0  (4.15) 

with D(~o) as in (4.13), (4.14). 

6 "Most, ' ;  e.g., wi th  respect  to the uniform measure  on f in i te-dimensional  uni t  spheres. 
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Unfortunately we are missing some good ideas of how to prove a 
result like (4.15) (but see the discussion at the end of Section 1). 

Our last example concerns the following. 

4.3. Nonl inear ,  Classical Spin W a v e s  

Consider some materiat doped w~th magnetic ions of very large spin S 
which are ferromagnetically coupled. The Hamilton operator of this system 
is then given by 

H A = -  ~, Jo.SeSj-- ~ hiS} (4.16) 
i , j ~ A  j ~ A  

where the exchange couplings, Jij, are positive, hj is an external magnetic 
field in the z direction, and A _c y_d. If the magnetic ions are diluted by non- 
magnetic material the Jij and the h / may be assumed to be random 
variables. Specifically we assume that 

SJij = j,j ,  [i - jl = 1, = O, otherwise 

where (~j)<~,j>~ z~ are i.i.d, random variables with smooth distributions 
supported on [0, oo). Since we have assumed that the spin, S, given by 

S~= S(S+  1), for all i 

is very large, the dynamics of this systems is approximately classical, (19) i.e., 
we may view the spins, Si, as unit vectors in ~3 which satisfy the equations 
of motion 

where h i=  (0, 0, h;). These are the so-called Landau-Lifshitz equations (2~ 
describing a Larmor precession of the spins, Si, in the effective magnetic 
field Z j  (SJ~)Sj+hi. They are Hamiltonian equations of motion, the 
Hamilton function being 

- Z  y hjs; 
i,j j 

The phase space of this system is given by 

(4.18) 

Xj~ zd s~j) 
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where S~j) is a copy of the unit sphere in N3, for everyj.  If qtj and Oj are the 
standard polar angles on S~j) the symplectic form can be written as 

d(cos 0 9 A d~j (Oj # O) 
J 

and the Liouville measure as 

For large hi, 

! 
dr = FIG d(cos 0j) d4j 

Y 

Si~ (0, O, 1) 

and we may expand all quantities in powers of the small angles Oj. Setting 

t ) ( j )  = Oje i*j E C 

0 < 0j < oo, we obtain, to second order in 0j, 

Si. $i_~ 1 - � 8 9  [ • ( i ) -  O(j)l 2 

The symplectic structure is given by 

Z dq j A dP j 
J 

with qj = Oj cos q~j, pj = Oj sin ~bj. To second order in O, the Hamiltonian is 
given by 

H (2~= (S/2) ~ J0 ltp(i) - O(j)la + ~ hj l t~(j) l  2 (4.t9) 
U J 

The problem of finding the eigenmodes and eigenfrequencies for the 
dynamics given by H (2~ is identical to the problem of determining eigen- 
functions and spectrum of the Jacobi matrix f2 2, with 

Q~= -f,-/ ,  I i - j [ =  1 

This problem has been analyzed in Section 1; see Refs. 4-6. We recall that 
if, for example, the disorder in h is large enough there exists a complete 
orthonormal system of localized (standing) spin waves. 
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In complete analogy with our analysis in Sections 2, 3, and 4.2 we 
ought to address the problem of analyzing the propagation properties of 
spin waves when the nonlinear terms in the equations of motion are not 
neglected. This problem is especially challenging if the only randomness is 
in the J~, hi--h ~ 0, and there is spontaneous magnetization. Although our 
general ideas and concepts can be applied to this problem, we have no 
interesting rigorous results, at present. 

Finally, we wish to mention that our techniques appear to have 
interesting applications to the theory of electrical networks with inductan- 
ces and capacitances that are slightly random. For such systems, our basic 
assumptions of sharply localized initial conditions and finite energy are 
actually quite realistic. 

S U M M A R Y  

In this paper we have formulated and discussed the general problem of 
localization in nonlinear dynamical systems. We have succeeded in 
extending the KAM iteration techniques to some Hamiltonian systems 
with infinitely many degrees of freedom. Although our strategy involves 
some novel ideas, its main technical ingredients are quite standard and 
somewhat crude. It would be most interesting and important to try to 
relax the very strong compactness condition (2.12) ,  [i.e., 
~ e x p ( - l j / a + ~ ) , c ~ > 0 ] ,  by means of a more careful analysis of the 
locality properties of the terms hk(I, co) andfk(I, ~b, co) (with respect to sub- 
sets of BL~ and N~) in the Hamiltonian (3.1), and to show that the interac- 
tion terms generate anisochronicity. 

Another problem for which we have partial but not entirely satisfac- 
tory results concerns the existence of periodic orbits in Hamiltonian 
systems with infinitely many degrees of freedom. But physically (and 
probably mathematically) the most interesting problem would be to prove 
the absence of diffusion (i.e., no energy transport) in nonlinear, disordered 
dynamical systems. In the Hamiltonian case we have some hopes that a 
combination of ideas developed in Refs. 5 and 10 will lead to such results, 
as discussed at the end of Section 1, but good general ideas and methods 
are still missing. 
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